基于均值滤波-小波分解时频联合方法的高桩码头监测大数据降噪方法研究*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51679081)


A denoising method for high-pile wharf monitoring big data based on mean filtering-wavelet decomposition time-frequency joint method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在智慧水运高速发展的背景下,高桩码头全寿命周期的安全状态监控已成为保障港口基础设施可靠性的核心课题,然而复杂环境导致的异常监测数据制约了高桩码头状态的精准评估和预测。针对高桩码头监测数据中、高频噪声与瞬态畸变频发,以及传统降噪方法难以适配非平稳信号特性的问题,提出了一种基于均值滤波-小波分解的时频联合降噪方法,建立了以相关系数、信噪比为核心的多指标评估模型,通过对比分析和特征参数优化筛选最优参数组合,并且从数据质量改善与预测精度提升两个维度展开验证。研究表明,基于均值滤波-小波分解的时频联合降噪方法,在抑制随机噪声、提高信噪比的同时,有效平衡了信号细节保留与趋势平滑需求,其降噪后数据与原始信号相关性显著优于单一滤波方法。研究成果为高桩码头监测数据的处理和预测提供了兼顾效率与精度的解决方案。

    Abstract:

    nder the context of rapid development in intelligent water transport,the safety status monitoring of the entire life-cycle of high-pile wharves has become a core issue in ensuring the reliability of port infrastructure.However,abnormal monitoring data caused by complex environmental conditions severely constrain accurate assessment and prediction of the status of high-pile wharves.To address the frequent occurrence of high-frequency noise and transient distortion in monitoring data from high-pile wharves,as well as the incompatibility of conventional denoising methods with non-stationary signal characteristics,a time-frequency joint denoising method integrating mean filtering and wavelet decomposition is proposed.A multi-indicator evaluation model prioritizing correlation coefficient and signal-to-noise ratio is established.Through comparative method analysis and feature parameter optimization,the optimal parameter combination is selected and validated from two dimensions:data quality improvement and prediction accuracy enhancement.Research shows that the time-frequency joint denoising method based on mean filtering wavelet decomposition effectively balances signal detail preservation and trend smoothing requirements while suppressing random noise and improving signal-to-noise ratio.The correlation between the denoised data and the original signal is significantly better than that of a single filtering method.The research results provide a solution that balances efficiency and accuracy for the processing and prediction of monitoring data for high-pile wharves.

    参考文献
    相似文献
    引证文献
引用本文

张舸帆,苏静波,吴锋,等.基于均值滤波-小波分解时频联合方法的高桩码头监测大数据降噪方法研究*[J].水运工程,2026(1):78-87.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-19
  • 出版日期:
文章二维码