基于潮汐导纳的短期潮流调和分析研究*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

长江水利委员会水文局2025年科技创新基金项目(SWJ-25CJX06)


Research on harmonic analysis for short-term tidal currents based on tidal admittance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对潮汐预报中传统调和分析方法因短期潮流数据量不足,难以准确识别主要分潮的问题,选取黄浦江下游典型断面,利用小潮、中潮和大潮期间的实测流速数据,开展了基于潮汐导纳原理与差比关系的调和分析方法对比研究。通过拟合主要分潮的标准化振幅和迟角随频率的变化关系,构建潮汐导纳模型并评估回报精度。结果表明:潮汐导纳方法在不依赖长期资料或经验差比数的条件下,能够有效应用于短期潮流数据的调和分析与流速回报,相较于传统差比法,潮流回报的均方根误差平均减少约8.9%。通过对全日潮和半日潮的标准化振幅与迟角进行二次函数拟合,揭示了其与频率之间的连续变化关系,验证了潮汐导纳函数的光滑性及其在调和分析中的可行性,对提升短期潮流预报能力和支持水文工程决策具有参考价值。

    Abstract:

    To address the limitations of traditional harmonic analysis methods in identifying major tidal constituents from short-term current data,a comparative study is conducted using the tidal admittance method and the ratio-of-amplitudes method.Field observations from a typical cross-section in the lower Huangpu River during neap,medium,and spring tides are used.By fitting the normalized amplitude and phase lag of major constituents as functions of frequency,a smooth tidal admittance model is constructed and its predictive performance is evaluated.The results indicate that the admittance method,without relying on long-term data or empirical amplitude ratios,can effectively applied to the harmonic analysis and velocity prediction of short-term tidal currents.Compared with the ratio-of-amplitudes method,it reduces the root-mean-square error of current prediction by an average of 8.9%.Quadratic fitting further reveals a continuous relationship between frequency,the normalized amplitude and delay angle of diurnal and semidiurnal constituents,confirming the smoothness of the admittance function and its applicability in harmonic analysis.This method enhances short-term tidal forecasting and supports hydrological and engineering decision-making.

    参考文献
    相似文献
    引证文献
引用本文

石 通,王宇奇峥,孙维康,等.基于潮汐导纳的短期潮流调和分析研究*[J].水运工程,2026(1):23-30.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-19
  • 出版日期:
文章二维码