码头结构健康监测传感器故障数据的识别与修复研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Identification and correction of sensor fault data for dock structural health monitoring
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对码头结构健康监测系统中因传感器故障导致数据异常、进而影响结构安全评估准确性的问题,提出一种基于改进箱型图法的故障数据识别与修复方法。通过融合改进箱型图法与散点图分析技术,构建了包含无故障、尖峰故障、漂移故障和偏置故障4类数据的统计特征识别模型,实现了故障类型的精确分类。在试验验证阶段,该方法在56组实测数据段中表现出91.07%的故障识别准确率。针对不同故障类型特征,研究分别设计了差异化修复策略:采用拉格朗日插值法处理尖峰故障,运用移动窗口均值拟合校正漂移和偏置故障。最后,通过修复前后数据的自相关性对比,验证了数据修复的有效性。研究成果为码头结构健康监测系统提供了可靠的数据质量保障方法,对提升重大基础设施安全监测水平具有重要的实践意义。

    Abstract:

    To address the issue of data anomalies in the structure health monitoring system of a dock due to sensor failures,which subsequently affects the accuracy of structural safety assessment,a fault data identification and correction method is proposed based on an improved box plot method.By integrating the improved box plot method with scatter plot analysis technique,a statistical feature recognition model is constructed that includes four types of data:no fault,spike fault,drift fault,and bias fault,achieving precise classification of fault types.In the experimental verification phase,the method exhibits a 91.07% fault recognition accuracy rate among 56 sets of actual measurement data segments.For different fault types,the research designs differentiated correction strategies:using Lagrange interpolation for spike faults,applying moving window mean fitting to correct drift and bias faults.Finally,by comparing the autocorrelation of data before and after correction,the effectiveness of data correction is verified.The research results provide reliable data quality assurance method for the dock structure health monitoring system and have significant practical significance for improving the level of safety monitoring of major infrastructure.

    参考文献
    相似文献
    引证文献
引用本文

林 猛.码头结构健康监测传感器故障数据的识别与修复研究[J].水运工程,2025(12):54-61.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码