基于构件损伤诱因反演的高桩码头服役寿命关键控制因素分析*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

:国家重点研发计划项目(2022YFB2603000)


Component damage cause inversion-based analysis of key control factors for service life of pile supported wharves
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高桩码头服役寿命关键控制因素识别不明确的问题,研究主要构件损伤与相关影响因素之间的关系。基于灰色关联分析与BP神经网络方法,以37座现役高桩码头为研究对象,分析其主要构件损伤程度与时间、环境和材料3类控制因素之间的关系。结果表明:在具体因素层面,使用时间、年平均降水量、年平均气温和氯离子浓度的灰色关联度值均高于0.62,表明其与构件损伤程度具有较强的相关性;在整体因素层面,环境因素对构件损伤的影响最为显著,权重占比为66%,其次为材料类因素和时间类因素,分别占比22%和12%。

    Abstract:

    To address the issue of unclear identification of key control factors affecting the service life of pile supported wharves, we systematically investigate the relationship between the damage of major components and relevant influencing factors.On the basis of grey relational analysis and the BP neural network method, we select 37 in-service pile supported wharves as research objects to analyze the induced relationships between component damage degree and three categories of control factors:time, environment, and materials.The results show that, at the specific factor level, the grey relational grades of service life, annual average precipitation, annual average temperature, and chloride ion concentration all exceed 0.62, indicating a strong correlation with component damage.At the overall factor level, environmental factors have the most significant impact on component damage, with a weight of 66%, followed by material factors (22%) and time factors (12%).

    参考文献
    相似文献
    引证文献
引用本文

李荣庆,贾振龙,杨海成,等.基于构件损伤诱因反演的高桩码头服役寿命关键控制因素分析*[J].水运工程,2025(10):55-63.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-20
  • 出版日期:
文章二维码