基于改进YOLOv5s+DeepSORT的集装箱码头移动目标识别跟踪算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Container wharf mobile object recognition and tracking algorithm based on improved YOLOv5s+DeepSORT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    过去基于深度学习的检测器性能较差,尺度变化、背景变化和视觉遮挡降低了原始图像定位的准确性。为此,提出一种改进的YOLOv5s+DeepSORT模型,以提高对码头环境的适应性。为增强多尺度加载对象的鲁棒性,将多尺度卷积嵌入YOLOv5s,同时增加高效金字塔分割注意网络(EPSA),实现了更强大的特征融合多尺度表示,模型平均精度(mAP)从90.05%提高至90.90%。通过分布式排序损失优化原始分类损失函数,减轻了加载对象内部不成比例和码头图像序列中背景变化的影响,提高多目标跟踪精度(MOTA)4.8%。在自建数据集上的实验显示,平均准确率为90.9%,检测准确率为92.2%。

    Abstract:

    Due to the poor performance of deep learning-based detectors in the past,scale variations,background variations,and visual occlusions reduce the accuracy of raw image localization.Therefore,an improved YOLOv5s+DeepSORT model is proposed to enhance adaptability to dock environments.To enhance the robustness of multi-scale loading objects,multi-scale convolution is embedded in YOLOv5s,and an efficient pyramid segmentation attention(EPSA) network is added to achieve more powerful feature fusion multi-scale representation.The mean average precision(mAP) is improved from 90.05% to 90.90%.By optimizing the original classification loss function through distributed sorting loss,the impact of imbalanced loading objects and background changes in dock image sequences is reduced,resulting in a 4.8% improvement in multiple object tracking accuracy (MOTA).Experiments on self built datasets show an average accuracy of 90.9% and a detection accuracy of 92.2%.

    参考文献
    相似文献
    引证文献
引用本文

陈东红,汪承志,李元淏,等.基于改进YOLOv5s+DeepSORT的集装箱码头移动目标识别跟踪算法研究[J].水运工程,2025(7):172-181.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-15
  • 出版日期:
文章二维码