复式河槽断面形态对综合糙率的影响

黄亚非

(重庆交通大学省部共建水利水运工程教育部重点实验室,重庆400074)

摘要:针对复式河槽的断面形态对称与否,对其综合糙率进行研究。根据大量的水槽试验进行整理分析,主要针对河槽几何形态以及相对水深比(h_f/H_n)对复式河槽的影响拟合出综合糙率表达式。结果表明,在一定范围内,综合糙率随滩槽 宽度比的增大而增大。并根据对比对称与非对称的计算结果,认为对称情况下的综合糙率比非对称情况下偏大。

关键词:复式河槽;综合糙率;断面形态;方法改进

中图分类号: TV 91; U 612

文献标志码:A

文章编号: 1002-4972(2016)08-0094-05

Impact on composite roughness by cross-section morphology of compound channel

HUANG Ya-fei

(Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering,

Chongqing Jiaotong University, Chongqing 400074, China)

Abstract: This paper did research on composite roughness in compound channels from the asymmetry and symmetry of cross-section morphology. Based on the analysis data from massive flume experiments and the influence on compound channel by channel geometry and relative water depth ratio (h_f/H_m) , this study developed a formula for composite roughness. From the results, it got that in a certain range, the composite roughness increases along with the increasing ratio of flood-plain width. Furthermore, through comparing the computational results when the cross-section morphology is symmetric with the computational results when the cross-section morphology is asymmetric, this research suggests that the composite roughness under the circumstance of symmetry is larger than that under the circumstance of symmetry.

Keywords: compound channel; composite roughness; cross-section morphology; method improvement.

在天然河流特别是山区河流中,河槽形态主 要为复式河槽。在水力计算中,复式河槽不同于 单一河槽,由于形态较为复杂,特别是水流刚漫 滩时,湿周会突然增大,导致水力半径发生变化, 河槽断面流速分布也发生改变。根据漫滩水流的 运动特点,复式河槽断面被分为主槽平衡区、滩 槽交互区、滩地平衡区以及边壁区等4个区^[1]。 特别是在滩槽交互区内,容易形成复杂的次生流 和螺旋流,水流紊动强度大于主槽平衡区和滩地 平衡区,这些因素的存在使水体发生大量的质量 交换^[2]。单一河槽除了边壁处存在速度梯度外, 其余速度梯度均不明显,也就是说可以认为在单 一河槽中不存在动量交换;而复式河槽滩槽之间 存在明显的速度梯度,发生了横向动量交换^[3], 随着水深的增加,边滩的流速增大而主槽的流速 降低,当水深增加到一定值时,则流速趋于平稳, 复式河槽的几何形态对其水力特性的影响不太 显著。

糙率值是反映水流阻力的一个综合无量纲系 数,也是水力计算中较为重要的参考系数。由于 复式河槽复杂的水力特性,不能再以单一河槽的 方法进行计算。国内外众多学者也对复式河槽进 行了研究,并得到相应的计算其综合糙率值的公 式,见表1。

收稿日期: 2016-02-25

作者简介:黄亚非(1990-),男,硕士研究生,从事水利工程以及河流动力学研究。

序号	n	假设	作者及文献
(1)	$\frac{\sum n_i A_i}{A}$	总的剪切速度等于各分 割区剪切速度加权和	Cox(1973) ^[4]
(2)	$\left[\frac{1}{P}\sum \left(n_i^{3/2}P_i\right)\right]^{2/3}$	总的断面平均流速等于 各分割区的平均流速	Horton(1933) ^[5] Einstein(1934) ^[6]
(3)	$\left[\frac{1}{P}\sum \left(n_i^2 P_i\right)\right]^{1/2}$	总的阻力等于各分割 区的阻力之和, $\sum F_i$	Pavlovskij (1931) ^[7]
(4)	$\frac{PR^{5/3}}{\sum \frac{P_i h_i^{5/3}}{n_i}}$	总的流量等于各分割 区的流量之和	Lotter(1993) ^[8]
(5)	$\exp\left[\frac{\sum P_i h_i^{3/2} \ln n_i}{\sum P_i h_i^{3/2}}\right]$	垂线流速分布满足对 数关系	Krishnamurthy, Christensen (1972) ^[9]

表1 综合糙率公式

表1中5个较为经典的综合糙率公式都是基于一定的假设得到的。式(1)根据分割面积或者分割区域的剪切速度进行加权计算,整个公式根据分割区域的几何形态进行加权计算,没有从单一河槽与复式河槽的区别出发。式(2)中,假设整个断面的平均速度等于分割区域的平均速度,显然适用于单一河槽,但与复式河槽不符。式(3)中,假设其总的河床阻力等于各个分割区的阻力之和。 根据剪切应力 $\tau = \frac{\gamma n^2 u^2}{R^{1/3}}$ 可知,其假设可转化为 $u_i R_i^{-1/6} = u R^{-1/6}$ 。在复式河槽中,当水流漫滩时,特别是刚漫滩的时候,流速非常小,且边滩水深很 浅,湿周增大,从而计算得到其水力半径很小。 因此,上述假设不符合实际情况。式(4)假设整个 断面流量等于各个分割区流量之和,这里并没有 考虑其动量交换对复式河槽的影响。式(5)假定流 速服从对数分布,针对单一河槽是适用的,在复 式河槽中,滩槽交互区存在动量交换,不再适用 于一般单一河槽的情况。而且,以上5个综合糙 率公式都没有考虑其动量交换所产生的影响。因 此本文考虑动量交换,针对对称以及非对称复式 河槽综合糙率公式进行研究。

1 试验对比

单一河槽与复式河槽的最大区别在于,复式 河槽在滩槽交互区内会产生动量交换。其区域所 发生的动量交换与水深变化有一定影响。 Knight^[10]认为刚漫滩时,动量交换很剧烈,随着 水深增加,复式河槽中滩槽交互区的动量交换对 整个断面的影响变小。因此,本文从断面水深 H_m 和边滩水深 h_f比的角度来探究复式河槽对称与非 对称情况下的综合糙率值。

本文搜集整理了大量的实测与试验资料进行 分析研究(表 2)。其中包括, James 等^[11]的 275 组 水槽试验,对称复式河槽 167 组、非对称的 108 组; 幸韵^[12]的 144 组非对称水槽试验。

表 2 数据资料

资料来源	序列	糙率 n		水 土 柚 庄 c	宽度/m			试验
		主槽糙率 n _m	边滩糙率 n_f	小刀圾皮 3	主槽宽度 b _m	左槽宽度 b _n	右槽宽度 b _{f21}	组数
	1~3	0.013	0.013	0.001~0.003	0.1778	0.5715	0. 571 5	50
	4~6	0.013	0.013	0.001~0.003	0.1778	0.368 3	0.368 3	42
	7~9	0.013	0.013	0.001~0.003	0.242 6	0.502 1	0.502 1	19
• <i>kk</i> -[1]]	10~12	0.013	0.013	0.001~0.003	0.1778	0.1905	0.1905	38
James 等 ^[11]	13~15	0.013	0.024	0.001~0.003	0.242 6	0.502 1	0.502 1	18
	16~18	0.013	0.013	0.001~0.003	0.1778	0. 190 5		36
	19~21	0.013	0.013	0.001~0.003	0.1778	0.368 3		43
	22~24	0.013	0.013	0.001~0.003	0.1778	0.5715		29
	25~28	0.009 00	0.009 00	0.001	0.07	0.14~0.035		27
	29~32	0.009 00	0.016 82	0.001	0.07	0.14~0.035		26
+ +6[12]	33~36	0.009 00	0.015 41	0.001	0.07	0.14~0.035		32
辛韵[15]	37~38	0.013 76	0.015 41	0.001	0.07	0.07~0.035		14
	39~42	0.009 00	0.013 76	0.001	0.07	0.14~0.035		33
	43~44	0.015 40	0.016 82	0.001	0.07	0.14~0.105		12

为了对复式河槽综合糙率值进行分析拟合, 本文将采用曼宁公式,计算出的糙率值 n 作为复 式断面的真实糙率 n_{me},即

$$n_{\rm true} = K_n R^{2/3} S^{1/2} v^{-1} \tag{6}$$

式中: R 为水力半径; S 为水力坡度; v 为流速, 对于国际标准单位的 v 和 R, K_n 为转换常数, $K_n =$ 1 m^{1/2}/s。在复式河槽中,主槽糙率 n_m 和边滩糙率 n_f 一般情况下都不同,取 n_{true}/n_m 作为相对糙率值 来进行分析研究^[10]。

1.1 对称复式河槽

针对对称复式河槽,在滩槽糙率相等的情况 下,即1~12序列数据,其相对糙率比(*n*_{true}/*n*_m) 与相对水深比(*h*_f/*H*_m)的关系见图1。随着水深的 增加,即漫滩的水深增加,相对糙率比(*n*_{true}/*n*_m) 会增大,但增大到一定范围内时,相对糙率比会 趋于1,其值保持恒定,也可以认为当水深增大 时,复式河槽中滩槽交互区的动量交换对整个断 面的影响变小,与 Knight^[3]的观点一致,即认为水 深较小时会有明显的滩槽相互作用,因此在水槽 试验中使其边滩与主槽的水深比上限为0.5。

图 1 对称情况下 $n_{true}/n_m 与 h_f/H_m$ 的关系

将图 1 中每组序列的数据进行拟合,得到一 个形式如 y = ax² + bx + c 的表达式,其中,y表示 n_{true}/n_m, x 表示 h_f/H_m。每组序列的多项式系数 a、 b、c 见表 3。

在所选取的 1~12 组序列数据中,在相同相对 糙率比的情况下,又存在不同坡度以及滩槽宽度 比的影响,见表 3。相同坡度的情况下,选取不同 滩槽宽度比,即第 1、4、7 和 10 组, *a*、*c* 值随着 滩槽宽度比的增大而单调递减,*b* 值随滩槽宽度比 的增大而单调递增;选取相同滩槽宽度比, a、c 值随着坡度的增大而单调递增, b 值随坡度的增大 而单调递减。

表 3 对称河槽拟合系数

组数	а	b	С	R^2	坡度	滩槽宽度比
1	-5.5676	3.625 8	0.3191	0.998 1	0.001	2.045 455
2	-6.090 1	3.884 3	0.3695	0.988 3	0.002	2.045 455
3	-5.337 8	3.721 5	0.3872	0.9974	0.003	2.045 455
4	-4.9396	3.236 5	0.341 6	0.9967	0.001	1.318 182
5	-3.3494	2.606 9	0.428 6	0.998 8	0.002	1.318 182
6	-3.557 3	2.755 6	0.439 3	0.995 0	0.003	1.318 182
7	-3.240 0	2.105 9	0.326 9	0.9992	0.001	1.317 848
8	-1.8827	1.675 5	0.385 3	0.9896	0.002	1.317 848
9	-1.407 0	1.580 1	0.414 7	0.9691	0.003	1.317 848
10	-2.400 2	1.8599	0.467 3	0.987 3	0.001	0. 681 818
11	-1.761 2	1.589 3	0.521 1	0.9974	0.002	0. 681 818
12	-1.8078	1.633 2	0.542 0	0.9964	0.003	0. 681 818

本文根据滩槽几何形态探讨动量交换对综合糙 率值的影响,只考虑滩槽宽度比对其的影响。将 y=ax²+bx+c 的表达式中的 a、b、c 系数用滩槽宽 度比 k 值表示。研究发现 k 值与 a 以及 a 与 b 有一 定的关系。滩槽宽度比 k 值与 a 的关系见图 2, a 和 b 的拟合关系见图 3, c 可以取其平均数 0.470 89。

综上所述,在对称且滩槽糙率比(1~12 序列 数据)相等的情况下,相对糙率(真实糙率与主槽 糙率的比值)与水深比以及滩槽宽度比存在的某种 关系,经拟合分析得到以下表达式,式(7)只适用

于 0≤
$$\frac{h_{\rm f}}{H_{\rm m}}$$
≤0.5的情况下。
 $\frac{n_{\rm true}}{n_{\rm m}}$ =(-2.8032k+0.27917) $\left(\frac{h_{\rm f}}{H_{\rm m}}\right)^2$ +
(1.5597k+0.439409) $\frac{h_{\rm f}}{H}$ +0.47089
(7)

式中: *h*_f 表示边滩的水深; *H*_m 表示断面水深。 **1.2** 非对称复式河槽

序列 16~24,是相对序列 1~12 的非对称复式 河槽,即其他几何形态及滩槽糙率均相同,只有 对称形态不同的相对情况。针对其非对称的形式 进行比较分析,结果见图 4。

图 4 同样表明复式河槽(不论是对称还是非对称)的糙率值与相对水深比有较大关系,只有在相对水深比0.5 以下动量交换更为突出。

在非对称情况下,与分析对称复式河槽的方 法一样,将图 4 中每组序列的数据进行拟合,得 到一个形式如 y=ax²+bx+c 的表达式。每组序列的 多项式系数 a、b、c 见表 4。并拟合得到非对称复 式河槽情况下,相对糙率与水深比以及滩槽宽度 比的表达式为:

$$\frac{n_{\text{true}}}{n_{\text{m}}} = (-1.012k + 0.100 \ 8) \left(\frac{h_{\text{f}}}{H_{\text{m}}}\right)^2 + (0.563 \ 05k + 0.538 \ 64) \frac{h_{\text{f}}}{H_{\text{m}}} + 0.567 \ 422$$
(8)

同样,式(8)适用于
$$0 \leq \frac{h_{\rm f}}{H_{\rm m}} \leq 0.5$$
的情况。

表4 3	非对称河	」槽拟る	含系数
------	------	------	-----

组数	а	b	С	R^2	坡度	滩槽宽度比
16	-1.257 8	1.039 4	0.5734	0.9984	0.001	0. 681 818
17	-0.964 4	0.925 0	0.6477	0.9932	0.002	0. 681 818
18	-0.6617	0.8879	0.6519	0.9967	0.003	0. 681 818
19	-1.464 8	1.3323	0.4897	0.9894	0.001	1.318 182
20	-1.250 8	1.3623	0.5125	0.9961	0.002	1.318 182
21	-1.048 7	1.411 6	0. 529 4	0.9967	0.003	1.318 182
22	-1.8399	1.721 1	0.3851	0.998 0	0.001	2.045 455
23	-1.721 4	1.704 0	0.3979	0. 997 9	0.002	2.045 455
24	-2. 193 0	1.982 4	0.4194	0.9996	0.003	2.045 455

根据式(7)和式(8)的对比,发现在相同范围 内,即 $0 \leq \frac{h_f}{H_m} \leq 0.5$,对称复式河槽的相对糙率比 $(n_{true}/n_m)较非对称河槽的相对糙率比要大。也可$ 以认为对称复式河槽比非对称的复式河槽综合糙率值偏大。除此之外,当滩槽宽度比增大时,综合糙率值也随之增大,见图5。

2 验证分析

序列 25~44 是水槽试验所得的非对称复式河 槽数据,为了验证式(8),将序列 25~44 的数据 代入其式进行计算,得到图 6。从图 6 中可以看到 误差较大,根据其表达式计算出的结果比实际值 要小。因为在式(8)的拟合过程中,是在滩槽糙率 相等的前提下,考虑了滩槽宽度比,为了对其进 行修正,将加入滩槽糙率比 k 值的影响,得到表

图 7 修改后计算值与实际值对比

根据非对称的结论,在对称河槽得到的 c 的 基础上,也乘以一个滩槽糙率比值 n_f/n_m,得到 下式:

$$\frac{n_{\text{true}}}{n_{\text{m}}} = (-2.803\ 2k + 0.279\ 17) \left(\frac{h_{\text{f}}}{H_{\text{m}}}\right)^2 + (1.559\ 7k + 0.279\ 17) \left(\frac{h_{\text{f}}}{H_{\text{m}}}\right)^2$$

$$0.439\ 409)\frac{h_{\rm f}}{H_{\rm m}} + 0.470\ 89\ \frac{n_{\rm f}}{n_{\rm m}} \tag{10}$$

对于修正后对称复式河槽的表达式(10)进行验证 对比,得到图 8 和图 9,可以看到,修正后的表达 式较修正前的更接近实际值一些。

与表1的5个综合糙率公式相比,本文研究 得到的公式都考虑了其动量交换所产生的影响, 适用于对称以及非对称复式河槽,应用更加广泛。

图 9 未改进的数据结果对比

3 结语

在复式河槽中滩槽交互区会产生动量交换,当水深较小时较为明显;当水深超过一定比值,其动量交换对于整个断面的影响较小,可以视为单一河槽。

 2)根据试验数据,考虑了滩槽宽度比、滩槽 糙率基值,在水深比范围为0≤^h_f _{H_m}≤0.5下拟合得
 到对称与非对称复式河槽的综合糙率的表达式, 当滩槽宽度比较大时糙率值会增大。

 3) 在对称和非对称复式河槽综合糙率的对比 当中,认为在其它条件相同的情况下,对称复式 河槽的综合糙率比非对称的偏大。

参考文献:

- [1] 吉祖稳, 胡春宏. 漫滩水流流速垂线分布规律的研究[J].
 水利水电技术, 1997, 28(7): 26-28.
- [2] 李彪, 胡旭跃, 徐立君.复式断面滩槽流速分布研究综述[J].水道港口, 2006, 26(4): 228-232.

(下转第105页)