

船闸平板输水阀门动力优化及 流激振动特性分析^{*}

王 新¹, 严秀俊²

(1.南京水利科学研究院水文水资源与水利工程科学国家重点实验室,江苏南京 210029;2.南京水利科学研究院通航建筑物建设技术交通行业重点实验室,江苏南京 210029)

摘要:针对船闸大尺寸平板输水阀门的流激振动问题,应用模态试验与有限元数值模拟相结合的分析方法研究阀门的 自振特性,指导阀门结构动力优化设计,通过水弹性模型试验研究阀门的流激振动特性。研究表明:阀门自振频率的试验 值和计算值吻合较好,振型完全一致;结构优化后基频显著提高,已完全脱离了水流脉动的高能区,流激振动响应较小, 不至于产生危害。

关键词:船闸;平板阀门;自振特性;流激振动;模型试验
中图分类号:U641
文献标志码:A
文章编号:1002-4972(2013)12-0151-04

Dynamic optimization and flow-induced vibration study on plate valve of ship lock

WANG Xin¹, YAN Xiu–jun²

(1. State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; 2. Key Laboratory of Navigation Structures, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

Abstract: For the flow-induced vibration problem of the large-scale plate valve of a ship lock, we employ the method of mode test and FEM simulation to study the self-vibration characteristics of the plate valve. The result is applied to conduct the dynamic optimization design of the structure. The hydro-elastic model test is conducted to study the flow-induced vibration characteristics of the valve. It is found that the test value and the calculation value of the self-vibration frequency and the mode shape of the valve are consistent. The basic frequency is improved obviously, which avoids the high-energy region of the flow pulsation. The flow-induced vibration response is relatively small and will not induce harms.

Key words: ship lock; plate valve; dynamic characteristics; flow-induced vibration; model test

阀门是船闸输水系统的咽喉,确保其安全可 靠运行至关重要。阀门非恒定流水动力特性较为 复杂,且门楣底缘等位置极易发生空化,加剧水 流紊动,常常引起阀门强烈振动。葛洲坝二号船 闸^[1]输水阀门,0.6开度阀门振动强烈,加速度最 大均方根值达4.0g,支铰固定螺栓松动,支座混 凝土塌落,导水板与底止水螺栓被剪断;湖南五 强溪船闸^[2]、福建水口船闸^[3]输水阀门0.1开度内均 出现较强冲击型振动,振动加速度大于5.0g。阀 门流激振动问题涉及外激励荷载和结构的本身固有 特性两个方面,外激励荷载作为振动的外因,通过 体型优化、采用小门槽、掺气等措施后可基本确

收稿日期: 2013-03-28

^{*}基金项目: 国家自然科学基金(51109143,51209144);江苏省自然科学基金(BK2011109);南京水利科学研究院基金(Y113004)

作者简介:王新(1983—),男,博士,高级工程师,研究方向为水工水力学模型试验与数值分析。

定,而阀门结构的动特性作为振动的内因,其基频 应尽量远离水流脉动的高能区,以免共振^[3-8]。故 阀门结构动力设计是稳定运行的一个重要因素。

某船闸输水阀门采用平板门,阀门段廊道 尺寸为4.6 m×6.0 m(宽×高),最大工作水头 19.20 m。而已建船闸绝大多数采用的是反弧门, 平板门应用较少,相关经验匮乏,且与已使用的 桥巩、沙溪口平板阀门相比,该阀门又具有尺寸 大的特点,因此,有必要进行结构动力优化设计 及流激振动特性研究。本文通过模态试验与有限 元计算研究结构的自振特性,指导结构优化设 计,通过水弹性模型试验研究阀门流激振动特 性,评价其振动安全性。

1 模态试验

对结构动力学方程作拉普拉斯变换,可得振 动系统传递函数:

$$H(j\omega) = \sum_{r=1}^{N} \left(\frac{A_r}{j\omega - \lambda_r} + \frac{A_r^*}{j\omega - \lambda_r^*} \right) \qquad (1)$$

式中: *A*,, *A*,分别为r阶模态的留数矩阵及其共轭; λ,, λ, λ,分别为r阶模态特征值及其共轭。结构传递函 数包含结构的全部模态参数,因此,获取结构传 递函数并经参数识别后就可得到结构的动特性。

阀门动特性模型按弹性相似原理设计,模型 几何比尺L,=10,用有机玻璃精加工而成。根据 阀门构造特征,将阀门结构离散为65个节点,每 个节点考虑横向x、水流方向y、竖向z 3个方向, 共195个自由度,节点布置见图1。对逐节点施加 任意大小的力进行激励,同时记录激励力与固定 节点的x、y、z 3个方向振动加速度信号,经电荷 放大器滤波放大后送入计算机,通过时域复指数 拟合求出传递函数,进而取得阀门结构的模态频 率、相应的阻尼与振型。激励使用激振锤,力的 大小通过装于锤头的力传感器测量,振动响应则 用三向微型加速度传感器测量。

试验测得阀门前五阶模态频率和阻尼比列于 表1。闸门基频19.23 Hz,一、二阶振型见图2,均 是沿面板法向的振动,一阶为反对称扭振,二阶 为对称弯曲振动。

表1 阀门自振频率和阻尼比

模态阶数	频率/Hz	阻尼比/%	振型描述				
<u> </u>	19.23	3.92	整体反对称振动				
<u> </u>	74.44	2.79	整体对称振动				
Ē	92.04	2.47	整体反对称振动				
四	113.20	2.65	整体对称振动				
Ŧī.	126.96	3.27	整体对称振动				

a) 一阶振型

2 自振特性计算

为了与动特性试验相互印证,采用有限元法 对阀门进行自振特性计算分析。建立阀门三维有 限元模型。横向为x轴,水流方向为y轴,竖向为z 轴,因阀门的面板、梁格等均为薄板结构,因此 采用具有6个自由度的空间四边形板单元对阀门整 体模型进行离散,对于横梁上翼缘与面板连接处 按2个单元考虑,分别计算其刚度,再叠加形成整 体刚度。模型离散后节点总数为15 352,单元总 数为19 972,模型网格见图3。材料参数按Q235钢 选取,吊耳处施加约束。

除去刚体模态外,阀门的一阶振动模态(第 7阶模态)频率为23.49 Hz,二阶振动模态(第8阶 模态)频率为67.04 Hz,三阶振动模态(第9阶模 态)频率为87.07 Hz,前几阶模态振型主要体现在 整体结构的对称和反对称振动,五阶之后更多体 现为局部薄弱结构的振动,频率相对密集,其中 一、二阶振型见图4。将模态分析的计算结果与试 验结果列于表2比较,2种方法得到的自振频率较 接近,偏差在20%以内,对应的各阶振型完全一 致,表明获得的阀门的动特性参数较可靠。两种 方法的主要区别在于数值计算无法得到结构的阻 尼,但试验可以。

表2 试验结果与计算结果比较

把刑			17人米45	
- 派空	偏差/%	计算/Hz	试验/Hz	PT SX
	18.14	23.49	19.23	`
友队把到相同	9.94	67.04	74.44	<u> </u>
音 阴派望相回	5.40	87.07	92.04	Ē
	15.17	96.03	113.20	四

3 结构优化

阀门水力学试验得到水流脉动压力能量集中 在20 Hz内, 主频在0~5 Hz。自振特性分析可知, 阀门基频不算太高,若考虑动水附加质量影响, 基频还会降低20%~50%,未完全脱离脉动高能 区,阀门结构需要优化,另外考虑到阀门门楣有 通气的要求,故在阀门下游面增设厚度为10 mm的 面板,将下游面封闭。从结构上看,增设下游面 板后阀门整体刚度增大,必然引起结构的自振特 性发生变化。为了考察设计优化后阀门的自振特 性,重新制作比尺仍为1:10的阀门弹性模型,对 修改后的阀门进行模态试验。将优化前后阀门前 五阶动特性参数列于表3进行对比。

表3 前	圆门优化前后动特性参数对比
------	---------------

阶数 -	原设计		优1	4E 111	
	频率/Hz	阻尼比/%	频率/Hz	阻尼比/%	抓望
_	19.23	3.92	60.79	4.07	
<u> </u>	74.44	2.79	91.10	3.64	
Ξ	92.04	2.47	117.18	3.69	各阶振型 相同
四	113.20	2.65	130.37	4.13	111.3
Ŧī.	126.96	3.27	168.94	4.65	

试验结果表明,阀门增设下游面板后基频显 著提高,由19.23 Hz增加到60.79 Hz,之后各阶频率 也都有明显的提升,对应的各阶振型完全相同。阀 门设计优化后,其自振频率已完全脱离了水流脉动 的高能区,不会出现危害性较大的共振。

4 流激振动

尽管不会发生共振,但流激振动特性仍需进 一步研究。目前流激振动响应研究较可靠的方法 是水弹性模型试验,研制满足比尺要求的水弹性 材料,制作同时满足几何相似、运动相似和动力 相似的阀门全水弹性模型。在阀门上游面板形心 布置微型三向加速度传感器测量阀门的振动加速 度,在阀门的面板、横梁腹板和翼缘、纵隔板、 边梁、吊耳等位置张贴多个应变计,测量阀门动 应力,试验在定水头定开度恒定流下进行。

以最大工作水头工况为例,阀门形心3个方向 振动加速度及不同构件的动应力列于表4。由表可 知, 阀门在小开度(0.1~0.2)时振动相对较小, 在0.5~0.8开度范围阀门振动相对较大,与实际运 行中小开度时振动较大略有不同, 主要由于采用 恒定流试验, 启门初期的冲击型振动无法反映; 阀门3个方向振动以竖向最大,面板法向次之,横 向最小;最大振动加速度均方根值为2.81 m/s²、均 出现在竖向,最大动应力均方根值为1.77 MPa,出 现在面板上; 阀门下部动应力相对较大, 上部动 应力相对较小。与正常运行的同类阀门实测振动 相比, 该阀门振动不大, 不至于产生危害, 若考 虑实际工况下阀门良好止水的约束作用,振动还 会有所减小。0.6开度面板法向振动加速度时程及 功率谱密度曲线绘于图5, 主频在5 Hz内, 与水流 脉动主频基本一致。

相对	振动加速度/(m·s ⁻²)		动应力/MPa							
开度	竖向	横向	面板法向	吊耳	横梁腹板	边梁腹板	横梁翼缘	横梁腹板	面板	纵隔板
0.1	0.91	0.24	0.45	0.25	0.12	0.33	0.34	0.40	0.60	1.02
0.2	1.59	0.40	0.87	0.47	0.42	0.55	0.53	0.52	0.99	1.18
0.3	2.33	0.55	1.36	0.29	0.16	0.51	0.46	0.48	1.34	1.20
0.4	2.49	0.58	1.46	0.30	0.16	0.57	0.49	0.48	1.50	1.13
0.5	2.75	0.63	1.50	0.43	0.35	0.65	0.61	0.57	1.56	1.14
0.6	2.81	0.64	1.45	0.38	0.31	0.66	0.70	0.58	1.77	1.03
0.7	2.65	0.61	1.34	0.29	0.14	0.52	0.50	0.45	1.57	0.80
0.8	2.65	0.59	1.32	0.32	0.23	0.51	0.55	0.45	1.50	0.75
0.9	2.07	0.47	0.93	0.31	0.19	0.40	0.50	0.38	1.29	0.68
1.0	0.77	0.13	0.31	0.28	0.18	0.34	0.34	0.31	0.47	0.30

表4 振动加速度和动应力

图5 阀门0.6开度面板法向加速度时程及功率谱密度 (下转第176页)